

17. Juli 2023

Amtliches Mitteilungsblatt

	Seite
Studien- und Prüfungsordnung für den konsekutiven	
Masterstudiengang Computer Engineering	
im Fachbereich Ingenieurwissenschaften – Energie und	l
Information vom 12. April 2023	233

Caita

Herausgeberin

Die Hochschulleitung der HTW Berlin

Treskowallee 8

10318 Berlin

Redaktion

Justiziariat

Tel. +49 30 5019-2813

Fax +49 30 5019-2815

HOCHSCHULE FÜR TECHNIK UND WIRTSCHAFT BERLIN

Studien- und Prüfungsordnung für den konsekutiven Masterstudiengang

Computer Engineering (CE) Master of Engineering (M.Eng.)

im Fachbereich Ingenieurwissenschaften – Energie und Information vom 12. April 2023

Auf Grund von § 17 Abs. 1 Nr. 1 der Neufassung der Satzung der Hochschule für Technik und Wirtschaft Berlin (HTW Berlin) zu Abweichungen von Bestimmungen des Berliner Hochschulgesetzes (AMBl. HTW Berlin Nr. 29/09), zuletzt geändert am 14. Oktober 2019 (AMBl. HTW Berlin Nr. 26/19), in Verbindung mit § 31 des Gesetzes über die Hochschulen im Land Berlin (Berliner Hochschulgesetz – BerlHG) in der Fassung der Bekanntmachung vom 26. Juli 2011 (GVBl. S. 378), zuletzt geändert durch Gesetz vom 23. März 2023 (GVBl. S. 121), hat der Fachbereichsrat des Fachbereiches Ingenieurwissenschaften – Energie und Information der HTW Berlin am 12. April 2023 die folgende Studien- und Prüfungsordnung für den Masterstudiengang Computer Engineering beschlossen¹:

Gliederung der Ordnung

§ 1	Geltungsbereich	.235
§ 2	Geltung der Rahmenstudien- und -prüfungsordnung (RStPO-Ba/Ma)	235
§ 3	Vergabe von Studienplätzen	235
§ 4	Ziele des Studiums	235
§ 5	Lehrveranstaltungen in englischer Sprache	236
§ 6	Regelstudienzeit, Studienplan, Module	236
§ 7	Ablauf des Studiums	237
§ 8	Ergänzendes allgemeinwissenschaftliches Lehrangebot	239
§ 9	Modulprüfungen	239
§ 10	Masterarbeit	240
§ 11	Abschlusskolloquium	241
§ 12	Modulgruppen und Modulnoten auf dem Masterzeugnis	241
§ 13	Berechnung des Gesamtprädikates	242

¹ Bestätigt durch die Hochschulleitung der Hochschule für Technik und Wirtschaft Berlin am 17. Mai 2023.

§ 14	Absc	hlussdokumente	243
§ 15	Inkr	afttreten/Veröffentlichung	244
Anlage	1	Studienplanübersicht für die Immatrikulation im Wintersemester	.245
Anlage	2	Studienplanübersicht für die Immatrikulation im Sommersemester	.247
Anlage	3	Wahlpflichtmodule	249
Anlage	4	AWE-Module/Fremdsprachen	250
Anlage	5	Modulübersicht	251
Anlage	6	Lernergebnisse und Kompetenzen für jedes Modul:	252
Anlage	7	Spezifika des Diploma Supplements	266
Anlage	8	Äquivalenztabelle	.269

§ 1 Geltungsbereich

- (1) Diese Studien- und Prüfungsordnung gilt für alle Studierenden, die nach Inkrafttreten dieser Ordnung am Fachbereich Ingenieurwissenschaften Energie und Information der HTW Berlin im Masterstudiengang Computer Engineering in das 1. Fachsemester immatrikuliert werden.
- (2) Ferner gilt diese Studien- und Prüfungsordnung für alle Studierenden, welche nach einem Hochschul- oder Studiengangwechsel aufgrund der Anrechnung von Studien- und Prüfungsleistungen zeitlich so in den Studienverlauf eingeordnet werden, dass ihr Studienstand dem Personenkreis gemäß Absatz 1 entspricht.
- (3) Die Studien- und Prüfungsordnung wird ergänzt durch die Zugangs- und Zulassungsordnung für den Masterstudiengang Computer Engineering in der jeweils gültigen Fassung.

§ 2 Geltung der Rahmenstudien- und -prüfungsordnung (RStPO-Ba/Ma)

Die Grundsätze für Studien- und Prüfungsordnungen für Bachelor- und Masterstudiengänge der Hochschule für Technik und Wirtschaft Berlin (Rahmenstudien- und -prüfungsordnung für Bachelor- und Masterstudiengänge – RStPO – Ba/Ma) in ihrer jeweils gültigen Fassung sind Bestandteil dieser Ordnung.

§ 3 Vergabe von Studienplätzen

- (1) Die Vergabe von Studienplätzen richtet sich nach dem Berliner Hochschulgesetz, dem Berliner Hochschulzulassungsgesetz und der Berliner Hochschulzulassungsverordnung in ihrer jeweils gültigen Fassung sowie der Auswahlordnung für konsekutive Masterstudiengänge der HTW Berlin (Auswahlordnung für Masterstudiengänge AO-Ma) und der Zugangs- und Zulassungsordnung für den konsekutiven Masterstudiengang Computer Engineering in ihrer jeweils gültigen Fassung.
- (2) Der Masterstudiengang Computer Engineering ist konsekutiv zum Bachelorstudiengang Computer Engineering.

§ 4 Ziele des Studiums

- (1) Das Studium im konsekutiven Masterstudiengang Computer Engineering vertieft die im Bachelorstudiengang Computer Engineering erworbenen Fähigkeiten und Fertigkeiten zur Entwicklung von Hard- und Softwaresystemen. Den Studierenden wird die Möglichkeit geboten, sich im Laufe des zweiten und dritten Semesters auf unterschiedlichen Gebieten des Computer Engineering zu spezialisieren.
- (2) Eine Spezialisierung in der Vertiefungsrichtung Embedded Control Systems konzentriert sich auf die Vermittlung erweiterter Kenntnisse zur Entwicklung komplexer, eingebetteter Systeme. Hierbei

werden neben ökonomischen Kriterien auch Faktoren wie Leistungsfähigkeit, Sicherheit aber auch Energieeffizienz und Nachhaltigkeit optimiert.

- (3) Eine Spezialisierung in der Vertiefungsrichtung Safety Critical Systems fokussiert auf den Erwerb von Kompetenzen, die zur Spezifikation, Realisierung und Verifikation von zuverlässigen und sicheren Systemen notwendig sind. Im Fokus stehen hierbei neben Konzepten und Standards auch der sichere Umgang mit formalen Methoden.
- (4) Ein besonderes Augenmerk liegt auf der Befähigung der Studierenden, zunehmend komplexer werdende Aufgaben bzw. Teilaufgaben sowohl als Einzelperson als auch innerhalb eines Teams zu lösen. Die Stärkung der Lösungskompetenz schließt eine zunehmende Befähigung zur kritischen Auseinandersetzung mit dem Stand der Technik sowie zur wissenschaftlichen Arbeit mit ein.
- (5) Absolvent*innen verfügen über umfangreiches, anwendungsbereites Wissen zur Entwicklung von Hard- und Softwaresystemen. Sie sind in der Lage, Kundenwünsche zu analysieren und ein optimiertes Lösungskonzept zu erarbeiten sowie technisch effizient umzusetzen. Ein solides Überblickwissen über angrenzende Fachgebiete ermöglicht es Absolvent*innen, mit Kolleg*innen anderer Fachdisziplinen effektiv an der Lösung technischer Herausforderungen zusammen zu arbeiten.
- (6) Absolvent*innen des Studiengangs Computer Engineering finden aufgrund ihrer fundierten Ausbildung ein interessantes und anspruchsvolles Spektrum an Berufsfeldern innerhalb der Ingenieurwissenschaften vor. So z.B.: in der Entwicklung komplexer Software/Hardware-basierter Systeme in
 - der Automobiltechnik,
 - dem Maschinenbau,
 - der Luft- und Raumfahrt und
 - der Medizintechnik oder

in der Forschung und Entwicklung innerhalb von

- Universitäten, Hochschulen
- Institutionellen Forschungseinrichtungen und
- firmeninternen Forschungs- und Entwicklungsabteilungen.

§ 5 Lehrveranstaltungen in englischer Sprache

Lehrveranstaltungen oder auch Teile davon können in englischer Sprache durchgeführt werden.

§ 6 Regelstudienzeit, Studienplan, Module

(1) Das Studium im konsekutiven Masterstudiengang Computer Engineering ist ein Präsenzstudium und hat eine Dauer von 4 Semestern (Regelstudienzeit). Es umfasst 120 ECTS-Leistungspunkte. Ein

ECTS-Leistungspunkt steht für einen studentischen Arbeitsaufwand (Workload) von 30 Stunden. Die jährliche Workload beträgt 1.800 Arbeitsstunden.

- (2) Das Studium wird im Einzelnen nach den Studienplänen in den Anlagen 1 und 2 durchgeführt und ist gemäß § 4 RStPO-Ba/Ma modularisiert. Sie enthalten eine Liste aller Module des konsekutiven Masterstudiengangs Computer Engineering. Die Wahlpflichtmodule werden in Anlage 3 aufgeführt. Das Angebot für die AWE-Module wird in der Anlage 4 dargestellt. Die Anlagen 1 bis 4 nennen für jedes Modul die Modulbezeichnung, die Niveaustufe, die Form und Art des Modulangebots (Pflicht-/Wahlpflichtmodul), die Präsenzzeit der Lehrveranstaltungen (in SWS), die zugrundeliegende Lernzeit in zu vergebenden ECTS-Leistungspunkte sowie die notwendigen und empfohlenen Voraussetzungen.
- (3) Für jedes Modul werden ferner Lernergebnisse und Kompetenzen festgelegt, die in Anlage 6 enthalten und Bestandteil dieser Ordnung sind.
- (4) Eine ausführliche Beschreibung der Module erfolgt in den Modulbeschreibungen für den konsekutiven Masterstudiengang Computer Engineering Master of Engineering (M.Eng.).

§ 7 Ablauf des Studiums

- (1) Studienbeginn im konsekutiven Masterstudiengang Computer Engineering ist zweimal jährlich, jeweils zum Sommer- und zum Wintersemester. Das zweite und dritte Fachsemester werden von Studierenden in Abhängigkeit vom Immatrikulationssemester (Sommer-/Wintersemester) in unterschiedlicher Reihenfolge absolviert.
- (2) Das Studium gliedert sich in Basismodule, Projektmodule, Wahlpflichtmodule für die angebotenen Vertiefungsrichtungen und AWE-Module. Die Basismodule vermitteln fortgeschrittene Aspekte der Hard- und Software-Entwicklung der Technischen Informatik, der Informatik und angrenzender Fachgebiete. Die Vertiefungsmodule vermitteln gegenüber den Basismodulen weiterführende bzw. ergänzende Aspekte des Hard- bzw. Software Entwurfs der Technischen Informatik, der Informatik und angrenzender Fachgebiete mit Blick auf die jeweilige Vertiefungsrichtung.
- (3) Den Studierenden werden zwei Vertiefungsrichtungen angeboten (siehe Studienverlaufsplan):
 - Embedded Control Systems (ECS) und
 - Safety Critical System (SCS).

Die Module M3 Embedded Linux und M4 Verification Validation im ersten Fachsemester stellen Einführungsveranstaltungen in die jeweilige Vertiefungsrichtung ECS und SCS dar. Werden Module im Umfang von 20 ECTS-LP aus einer Vertiefungsrichtung erfolgreich absolviert, so wird diese auf dem Masterzeugnis ausgewiesen. Eine Spezialisierung in einer Vertiefungsrichtung ist nicht verbindlich.

Studienverlaufsplan:

	Basism	odule	Projekt- module	Vertiefung Embedded Systems	l Control	Vertiefungs Safety Critics (SC:	AWE- Module	
1. FS	M1 Computer Vision		M2 Project Engineering	M3 Embedded Linux		M4 Verification Validation		M6 und M14 Supple- mentary Module 1 und 2
SoSe	M7 Electronic System Level Design	M8 Applied Mathe- matics	M9 CE Project 1 bzw. M16 CE Project 2	WP-Module ECS im Umfang von 10 ECTS-LP		WP-Mo SCS im U von 10 E		
WiSe	M12 Distributed Systems	M13 Model Based Systems	M9 CE Project 1 bzw. M16 CE Project 2	WP-Modul ECS im Umfang von 5 ECTS-LP	M100 Selected Topics in ECS	WP-Modul SCS im Umfang von 5 ECTS-LP	M200 Selected Topics in SCS	
4. FS	M17 Master' M18 Final Or		ion with Maste	er's Thesis Sei	minar			

- (4) Der Fachbereichsrat kann aufgrund aktueller Entwicklungen weitere Wahlpflichtmodule beschließen.
- (5) Nach Maßgabe freier Plätze und mit Genehmigung durch den Prüfungsausschuss können Studierende Wahlpflichtmodule im Umfang von zehn ECTS-LP in anderen ingenieurwissenschaftlichen Studiengängen und/oder Informatikstudiengängen der HTW Berlin absolvieren.
- (6) Die Projektmodule umfassen ein größeres Projekt zur Lösung einer anwendungsnahen fachspezifischen Forschungs- oder Entwicklungsaufgabe in Teamarbeit, das Computer Engineering Projekt (CE Project). Das Computer Engineering Projekt (M9 CE Project 1 und M14 CE Project 2) wird im ersten Fachsemester durch das Modul M2 Project Engineering theoretisch fundiert und vorbereitet. Zu den Computer Engineering Projekten werden jeweils mindestens zwei Themen zur Auswahl gestellt. Die

im zweiten Fachsemester begonnene praktische Projektarbeit wird i.d.R. im dritten Fachsemester zu Ende geführt. Im Ausnahmefall ist es möglich im dritten Semester ein neues Projekt zu bearbeiten.

- (7) In jedem Semester kann ein Modul als E-Learning-Modul angeboten werden. Welche Module auf diese Art angeboten werden, beschließt der Fachbereichsrat rechtzeitig vor Semesterbeginn. Als E-Learning-Module können alle Module bis auf die AWE-Module/Fremdsprachen durchgeführt werden.
- (8) Das vierte Fachsemester besteht in der Anfertigung der Masterarbeit. Begleitend werden im Masterseminar Methodenkompetenz in der wissenschaftlichen Anfertigung der Abschlussarbeit vermittelt.
- (9) Das Studium schließt mit dem erfolgreichen Abschluss aller Module, der erfolgreich durchgeführten Masterarbeit und dem erfolgreichen Abschlusskolloquium ab. Die Masterarbeit wird von einem Seminar im Rahmen des Moduls Abschlusskolloquium mit Masterseminar begleitet, wobei das Kolloquium die Modulprüfung im Modul Abschlusskolloquium mit Masterseminar ist.

§ 8 Ergänzendes allgemeinwissenschaftliches Lehrangebot

- (1) Der Umfang der allgemeinwissenschaftlichen Ergänzungsmodule (AWE-Module) beträgt vier ECTS-Leistungspunkte. Die AWE-Module müssen aus dem AWE-Modulangebot der HTW Berlin gewählt werden (keine Fremdsprache).
- (2) Abweichend von Abs. 1 können zwei ECTS Leistungspunkte auf die vertiefende Ausbildung in Englisch und zwei ECTS-Leistungspunkte auf andere allgemeinwissenschaftliche Ergänzungsmodule entfallen. Die Englisch-Ausbildung dient der Vertiefung bereits vorhandener Kenntnisse auf dem Niveau des akademischen Sprachgebrauchs (C1 oder C2).
- (3) Abweichend von Absatz 1 kann der gesamte Umfang der allgemeinwissenschaftlichen Ergänzungsmodule auf eine vertiefende Fremdsprachenausbildung (Englisch: C1 oder C2; Französisch, Russisch, Spanisch: B2.2) entfallen.
- (4) Bei ausländischen Studierenden, die ihren Bachelorabschluss in einer anderen Sprache als Deutsch erworben haben, kann der gesamte Umfang der allgemeinwissenschaftlichen Ergänzungsmodule auf eine vertiefende Ausbildung in Deutsch als Fremdsprache (C1.1) entfallen.
- (5) Die nach Abs. 2 bis 4 gewählte Fremdsprache darf nicht mit der Muttersprache des oder der Studierenden identisch sein.

§ 9 Modulprüfungen

- (1) Alle Module werden differenziert bewertet.
- (2) Die Zulassung zu einer Prüfung oder zur Erbringung einer modulbegleitend geprüften Studienleistung setzt die Belegung des entsprechenden Moduls gemäß Hochschulordnung voraus.

- (3) Die erfolgreiche Teilnahme an einem Modul wird durch das Bestehen einer einheitlichen Modulprüfung nachgewiesen. Die Prüfungskomponenten und Prüfungsformen werden für jedes Modul in den Modulbeschreibungen für den konsekutiven Masterstudiengang Computer Engineering festgelegt.
- (4) Besteht eine Modulprüfung aus mehreren Prüfungskomponenten, so wird die Modulnote durch die Bildung eines gewogenen Mittels der Teilnoten ermittelt, wobei die Gewichtung der Teilnoten in der Modulbeschreibung festzulegen ist.
- (5) Die bestandene Modulprüfung ist Voraussetzung für die Vergabe von Leistungspunkten. Die Anzahl der mit den einzelnen Modulen jeweils zu erwerbenden Leistungspunkte sind in der Anlage 1 dieser Ordnung aufgeführt.
- (6) Wurde die Prüfung in einem Wahlpflichtmodul bestanden, kann dieses nicht mehr durch ein anderes Wahlpflichtmodul ersetzt werden.
- (7) Besteht die Modulprüfung nur aus einer modulbegleitend geprüften Studienleistung so ist bei Nichtbestehen bzw. Nichtantritt die erneute Belegung erforderlich. Im Übrigen ist im Wiederholungsfall nur die Prüfungsanmeldung zwingend erforderlich.
- (8) Für die Projektmodule M2, M9 und M14, in denen die Modulprüfung aus einer modulbegleitend geprüften Studienleistung besteht, gibt es nur eine Prüfungsmöglichkeit im Semester.

§ 10 Masterarbeit

- (1) Der Prüfungsausschuss des Studienganges bestätigt durch Unterschrift des oder der Vorsitzenden das Thema der Masterarbeit und er legt den Bearbeitungsbeginn und den Abgabetermin sowie die betreuenden Prüfer*innen schriftlich fest.
- (2) Zur Masterarbeit wird zugelassen, wer alle Module der ersten drei Studienplansemester im Umfang von 90 ECTS-Leistungspunkten erfolgreich abgeschlossen und sich bis spätestens zum Ende der jeweils festgelegten Vorlesungszeit des vorletzten Studienplansemesters in der Abteilung Studierendenservice angemeldet hat. Ein oder eine Kandidat*in kann auch zugelassen werden, wenn er oder sie Module im Gesamtumfang von bis zu zehn ECTS-Leistungspunkten noch nicht erfolgreich abgeschlossen hat.
- (3) Der zeitliche Bearbeitungsaufwand der Masterarbeit entspricht 25 ECTS-Leistungspunkten. Die Bearbeitungszeit für die Masterarbeit umfasst 19 Wochen. Die Masterarbeit ist zum im Abs. 1 festgelegten Abgabetermin gemäß § 23 Abs. 7 RStPO-Ba/Ma einzureichen.
- (4) Die Masterarbeit umfasst die schriftliche Ausarbeitung eines Themas aus dem Bereich des Computer Engineering sowie eine schriftliche Ergebniszusammenfassung. Die Masterarbeit kann als Gruppenarbeit von zwei Personen durchgeführt werden. In diesem Fall müssen die Beiträge der einzelnen Prüflinge abgrenzbar und individuell zu beurteilen sein.

§ 11 Abschlusskolloquium

- (1) Das Kolloquium ist die Modulprüfung im Modul Abschlusskolloquium mit Masterseminar. Voraussetzung für die Zulassung zum Kolloquium sind eine Masterarbeit, welche von zwei unabhängigen Gutachtern positiv beurteilt wurde und der Nachweis von 115 ECTS-Leistungspunkten im Masterstudiengang Computer Engineering.
- (2) Das Kolloquium als die Modulprüfung im Modul Abschlusskolloquium mit Masterseminar konzentriert sich im Kern auf den Inhalt der Masterarbeit. Dabei setzt es diesen in Bezug zu den Lehrinhalten des Masterstudiengangs Computer Engineering und überprüft dabei das Verständnis wissenschaftlicher Prinzipien und Methoden dieses Studiengangs. In dieser Prüfung soll der/die Studierende zeigen, dass er/sie in der Lage ist, einen komplexen Sachverhalt in kurzer Zeit darzustellen und seine/ihre Argumentation gegen Kritik zu verteidigen.
- (3) Wurde eine Masterarbeit als Gruppenarbeit durchgeführt, so soll das Kolloquium als gemeinsame Prüfung organisiert werden.

§ 12 Modulgruppen und Modulnoten auf dem Masterzeugnis

- (1) Die in Absatz 2 genannten Module werden zur Bildung von Gesamtnoten für das Masterzeugnis zu fachspezifischen Modulgruppen mit eigenen Namen zusammengefasst. Soweit nichts anderes bestimmt ist, wird die Gesamtnote einer Modulgruppe durch die Bildung des gewogenen Mittels der einzelnen Modulnoten auf der Grundlage der Leistungspunkte der einzelnen Module ermittelt.
- (2) Die Module M9 CE-Project 1 und M14 CE-Project 2 bilden die Modulgruppe **Prototypische Produktentwicklung in Teamarbeit**.
- (3) Reihenfolge der Module auf dem Masterzeugnis:
- (a) Pflichtmodule:

Computer Vision

Project Engineering

Embedded Linux

Verification Validation

Electronic System Level Design

Applied Mathematics

Distributed Systems

Model Based Systems

(b) Vertiefungsrichtung: Embedded Control Systems oder Safety Critical Systems oder Wahlpflichtmodule (sofern keine Vertiefungsrichtung absolviert):

(Bezeichnung des gewählten WP-Modul 1)

(Bezeichnung des gewählten WP-Modul 2)

(Bezeichnung des gewählten WP-Modul 3)

(Bezeichnung des gewählten WP-Modul 4: Selected Topics)

(c) Fachspezifisches Projekt

Prototypische Produktentwicklung in Teamarbeit

(d) Allgemeinwissenschaftliche Ergänzungsmodule:

(AWE-Modul 1, ggf. Vertiefende Fremdsprache)

(AWE-Modul 2, ggf. Vertiefende Fremdsprache)

- (4) Die Noten folgender Module werden auf dem Masterzeugnis ausgewiesen, gehen jedoch nicht in die Berechnung des Gesamtprädikates ein:
 - Verification Validation
 - Electronic System Level Design
 - Applied Mathematics
 - Distributed Systems
 - Model Based Systems
 - Supplementary Module 1
 - Supplementary Module 2

§ 13 Berechnung des Gesamtprädikates

(1) Das Gesamtprädikat des Abschlusses ergibt sich aus der Gesamtnote (X), die wiederum als gewogenes arithmetisches Mittel der Teilnoten (X_1 , X_2 , X_3) nach der Formel

$$X=aX_1+bX_2+cX_3$$

berechnet, nach der zweiten Stelle hinter dem Komma abgeschnitten und auf eine Stelle nach dem Komma gerundet wird. Die Teilnoten sind:

- a) der gewogene Mittelwert der Modulnoten, die in die Berechnung der Abschlussnote Eingang finden (Größe X₁); dabei wird die errechnete Note nach den ersten beiden Stellen hinter dem Komma abgeschnitten,
- b) die Note der Masterarbeit (Größe X2) und
- c) die Note des Moduls Abschlusskolloquium mit Masterseminar (Größe X₃).

Für die Gewichtungsfaktoren gilt:

$$a = 0.60$$
; $b = 0.30$; $c = 0.10$.

(2) Die Berechnung der Größe X₁ für das Gesamtprädikat erfolgt durch die Bildung eines gewogenen Mittels aller Module aufgrund der Anzahl der jeweiligen ECTS-Leistungspunkte.

$$X_1 = \frac{\sum (F_i \cdot a_i)}{\sum a_i}$$

Darin bedeuten

- F_i: Die Fachnoten der einzelnen Module,
- ai: Die Gewichtungsfaktoren (Leistungspunkte) der einzelnen Module.
- (3) Die Gewichtungsfaktoren der einzelnen Module sind im Folgenden aufgeführt:

Modulbezeichnung	Gewichtungsfaktor a _i
Computer Vision	7
Project Engineering	7
Embedded Linux	6
WP-Modul 1	5
WP-Modul 2	5
WP-Modul 3	5
WP-Modul 4: Selected Topics	5
CE-Project 1	10
CE-Project 2	10
Summe	60

§ 14 Abschlussdokumente

- (1) Die Absolvent*innen erhalten die Abschlussdokumente gemäß § 28 der RStPO Ba/Ma in ihrer jeweils gültigen Fassung. Die Verleihung des akademischen Grades Master of Engineering (M.Eng.) wird auf der Masterurkunde bescheinigt.
- (2) Die Spezifika des Diploma Supplements des Masterstudienganges Computer Engineering werden in der Anlage 7 ausgewiesen.

§ 15 Übergangsregelungen

Studierende, welche in Studienverzug geraten sind und für die Module nach der vorangegangenen Studien- und Prüfungsordnung im konsekutiven Masterstudiengang Computer Engineering vom 11. Januar 2017 (AMBl. HTW Berlin Nr. 20/17) nicht mehr angeboten werden, müssen als Äquivalent die in Anlage 5 aufgeführten Module dieser Ordnung absolvieren.

§ 16 Inkrafttreten/Veröffentlichung

Diese Ordnung tritt am Tage nach ihrer Veröffentlichung im Amtlichen Mitteilungsblatt der HTW Berlin mit Wirkung vom 1. Oktober 2023 in Kraft.

Anlage 1 Studienplanübersicht für die Immatrikulation im Wintersemester

1. Semester (Wintersemester)

Nr.	Modulbezeichnung	Art	Form	SWS	LP	NSt	NV	EV
M1	Computer Vision	Р	PÜ/PCÜ	2/2	7	2a	-	-
M2	Project Engineering	Р	PÜ/PCÜ	2/2	7	2a	-	-
М3	Embedded Linux	Р	PÜ/LPr	2/2	6	2a	-	-
M4	Verification Validation	Р	PÜ/PCÜ	2/2	6	2a	-	-
M5	Supplementary Module 1	WP	PÜ	2	2	2a	-	-
M6	Supplementary Module 2	WP	PÜ	2	2	2a	-	-
	Summe LP Semester				30			

2. Semester (Sommersemester)

Nr.	Modulbezeichnung	Art	Form	SWS	LP	NSt	NV	EV
M7	Electronic System Level Design	Р	SL/PCÜ	2/2	5	2a	-	-
M8	Applied Mathematics	Р	SL/PCÜ	2/2	5	2a	-	-
М9	CE-Project 1	WP	PS	5	10	2b	-	M2
M10	WP-Modul 1	WP	PÜ	4	5	Siehe Anlage 3		
M11	WP-Modul 2	WP	PÜ	4	5	Siehe Anlage 3		
	Summe LP Semester				30			

3. Semester (Wintersemester)

Nr.	Modulbezeichnung	Art	Form	SWS	LP	NSt	NV	EV
M12	Distributed Systems	Р	SL/PCÜ	2/2	5	2a	-	-
M13	Model Based Systems	Р	SL/PCÜ	2/2	5	2a	-	-
M14	CE-Project 2	WP	PS	5	10	2b	-	M2, M9
M15	WP-Modul 3	WP	PÜ	4	5	Si	iehe Anlag	ge 3
M16	WP-Modul 4: Selected Topics	WP	PÜ	3	5	Siehe Anlage 3		
	Summe LP Semester				30			

4. Semester (Sommersemester)

Nr.	Modulbezeichnung	Art	Form	SWS	LP	NSt	NV	EV
M17	Master's Thesis	Р	MA		25	2b	Siehe § 10	-
M18	Final Oral Examination with Master's Thesis Seminar	Р			5	2b	Siehe § 11	-
M18.1	Master's Thesis Seminar		PS	1,5				
	Summe LP Semester				30			
	Summe LP gesamt				120			

Erläuterungen:

Form der Lehrveranstaltung:

SL Seminaristischer Lehrvortrag PÜ Praktische Übung
LPr Laborpraktikum PS (Projekt-)Seminar
PCÜ PC-Übung MA Masterarbeit

Art des Moduls:

P Pflichtmodul WP Wahlpflichtmodul

Allgemein:

LP ECTS-Leistungspunkte SWS Semesterwochenstunden

NSt Niveaustufe (2a = voraussetzungsfrei/2b = voraussetzungsbehaftet)

EV Empfohlene Voraussetzung (Module mit empfohlen bestandener Prüfungsleistung)

NV Notwendige Voraussetzung (Module mit notwendig bestandener Prüfungsleistung)

Anmerkung:

Ein ECTS-Leistungspunkt steht für eine studentische Lernzeit (Workload) von 30 Stunden à 60 Minuten.

Anlage 2 Studienplanübersicht für die Immatrikulation im Sommersemester

1. Semester (Sommersemester)

Nr.	Modulbezeichnung	Art	Form	SWS	LP	NSt	NV	EV
M1	Computer Vision	Р	PÜ/PCÜ	2/2	7	2a	-	-
M2	Project Engineering	Р	PÜ/PCÜ	2/2	7	2a	-	-
М3	Embedded Linux	Р	PÜ/LPr	2/2	6	2a	-	-
M4	Verification Validation	Р	PÜ/PCÜ	2/2	6	2a	-	-
M5	Supplementary Module 1	WP	PÜ	2	2	2a	-	-
М6	Supplementary Module 2	WP	PÜ	2	2	2a	-	-
	Summe LP Semester				30			

2. Semester (Wintersemester)

Nr.	Modulbezeichnung	Art	Form	SWS	LP	NSt	NV	EV
M12	Distributed Systems	Р	SL/PCÜ	2/2	5	2a	-	-
M13	Model Based Systems	Р	SL/PCÜ	2/2	5	2a	-	-
M9	CE-Project 1	WP	PS	5	10	2b	-	M2
M15	WP-Modul 3	WP	PÜ	4	5	Siehe Anlage 3		
M16	WP-Modul 4: Selected Topics	WP	PÜ	3	5	Siehe Anlage 3		
	Summe LP Semester				30			

3. Semester (Sommersemester)

Nr.	Modulbezeichnung	Art	Form	SWS	LP	NSt	NV	EV
M7	Electronic System Level Design	Р	SL/PCÜ	2/2	5	2a	-	-
M8	Applied Mathematics	Р	SL/PCÜ	2/2	5	2a	-	-
M14	CE-Project 2	WP	PS	5	10	2b	-	M2, M9
M10	WP-Modul 1	WP	PÜ	4	5	S	iehe Anlag	ge 3
M11	WP-Modul 2	WP	PÜ	4	5	Siehe Anlage 3		
	Summe LP Semester				30			

4. Semester (Wintersemester)

Nr.	Modulbezeichnung	Art	Form	SWS	LP	NSt	NV	EV
M17	Master's Thesis	Р	MA		25	2b	Siehe § 10	
M18	Final Oral Examination with Master's Thesis Seminar	Р			5	2b	Siehe §11	
M18.1	Master's Thesis Seminar		PS	1,5				
	Summe LP Semester				30			
	Summe LP gesamt				120			

Erläuterungen:

Form der Lehrveranstaltung:

SL Seminaristischer Lehrvortrag PÜ Praktische Übung
LPr Laborpraktikum PS (Projekt-)Seminar
PCÜ PC-Übung MA Masterarbeit

Art des Moduls:

P Pflichtmodul WP Wahlpflichtmodul

Allgemein:

LP ECTS-Leistungspunkte SWS Semesterwochenstunden

NSt Niveaustufe (2a = voraussetzungsfrei/2b = voraussetzungsbehaftet)

EV Empfohlene Voraussetzung (Module mit empfohlen bestandener Prüfungsleistung)

NV Notwendige Voraussetzung (Module mit notwendig bestandener Prüfungsleistung)

Anmerkung:

Ein ECTS-Leistungspunkt steht für eine studentische Lernzeit (Workload) von 30 Stunden à 60 Minuten.

Anlage 3 Wahlpflichtmodule

Angebote für WP-Module M10, M11 und M15, M16

Aus dem Angebot an Wahlpflichtmodulen (vier Module im SoSe und vier Module im WiSe) müssen Module im Umfang von 20 ECTS-LP absolviert werden. Für das Modul M16 WP-Modul 4: Selected Topics muss ein Modul aus dem Modulangebot M100 Selected Topics in ECS oder M200 Selected Topics in SCS absolviert werden. Werden Module im Umfang von 20 ECTS-LP aus einer Vertiefungsrichtung absolviert, wird diese Vertiefungsrichtung auf dem Masterzeugnis ausgewiesen. Ansonsten werden die Module unter Wahlpflichtmodule auf dem Masterzeugnis ausgewiesen.

Gemäß § 7 Abs. 4 kann der Fachbereichsrat weitere Wahlpflichtmodule beschließen. Der oder die Studiengangsprecher*in entscheidet rechtzeitig welche Wahlpflichtmodule angeboten.

Vertiefungsrichtung: Embedded Control Systems (ECS)

Angebot nur im	Nr.	Modulbezeichnung	Form	SWS	LP	NSt	NV	EV
WiSe	M100	Selected Topics in ECS	PÜ	3	5	2a	-	M3, M4
WiSe	M101	Hardware/Software Co-Design	PÜ	4	5	2a	-	M3, M4
SoSe	M102	Realtime Systems	PÜ	4	5	2a	-	M3, M4
SoSe	M103	Advanced Signal Processing	PÜ	4	5	2a	-	M3, M4

Vertiefungsrichtung: Safety Critical Systems (SCS)

Angebot nur im	Nr.	Modulbezeichnung	Form	SWS	LP	NSt	NV	EV
WiSe	M200	Selected Topics in SCS	PÜ	3	5	2a	-	M3, M4
WiSe	M201	Applied Logic	PÜ	4	5	2a	-	M3, M4
SoSe	M202	Dependable Systems	PÜ	4	5	2a	-	M3, M4
SoSe	M203	Domain Specific Languages	PÜ	4	5	2a	-	M3, M4

Anlage 4 AWE-Module/Fremdsprachen

Variante 1 (gemäß § 8 Abs. 1):

Nr.	Modulbezeichnung	LP	NSt	NV	EV
M5	AWE-Modul 1	2	2a	-	-
M6	AWE Modul 2	2	2a	-	-

Variante 2 (gemäß § 8 Abs. 2):

Nr.	Modulbezeichnung	LP	NSt	NV	EV
M5	Englisch C1.1 A/W/T oder Englisch C1.2 A/W/T	2	2b	-	1
M6	AWE Modul	2	2a	-	-

Variante 3 (gemäß § 8 Abs. 3):

Nr.	Modulbezeichnung	LP	NSt	NV	EV
M5 +	Englisch C1.1 A/W/T oder Englisch C1.2 A/W/T oder	4	2b	-	2
M6	Französisch B2.2 W oder				
	Russisch B2.2 W oder				
	Spanisch B2.2 W				

Variante 4 (gemäß § 8 Abs. 4):

Nr.	Modulbezeichnung	LP	NSt	NV	EV
M5 +	Deutsch als Fremdsprache C1.1 W/T	4	2b	-	3
М6					

¹ Englisch Modul B2.2

 $^{^{\}rm 2}$ Englisch: Modul B2.2, Französisch/Russisch/Spanisch: Modul B2.1

³ Deutsch: Modul B2.2 oder DSH

Anlage 5 Modulübersicht

	Computer Engineering	Computer Engineering	
Nr.	Modulbezeichnung (englisch)	Modulbezeichnung (deutsch)	LP
M1	Computer Vision	Bild- und Videoverarbeitung	7
M2	Project Engineering	Projektentwicklung	7
М3	Embedded Linux	Embedded Linux	6
M4	Verification Validation	Verifikation und Validierung	6
M5	Supplementary Module 1	AWE Modul 1	2
M6	Supplementary Module 2	AWE Modul 2	2
M7	Electronic System Level Design	Entwurf auf Systemebene	5
M8	Applied Mathematics	Angewandte Mathematik	5
M9	CE Project 1	CE Projekt 1	10
M12	Distributed System	Verteilte Systeme	5
M13	Model Based Systems	Modellbasierte Systeme	5
M14	CE Project 2	CE Projekt 2	
M17	Master's Thesis	Masterarbeit	25
M18	Final Oral Examination with Master's The-	Abschlusskolloquium mit Masterseminar	5
	sis Seminar		
	Specialisation:	Vertiefungsrichtung:	
	Embedded Control Systems (ECS)	Embedded Control Systems (ECS)	
M100	Selected Topics in ECS	Ausgewählte Kapitel der ECS	5
M101	Hardware/Software Co-Design	Hardware/Software Co-Entwurf	5
M102	Realtime Systems	Echtzeitsysteme	5
M103	Advanced Signal Processing	Fortgeschrittene Signalverarbeitung	5
	Specialisation:	Vertiefungsrichtung:	
	Safety Critical Systems (SCS)	Safety Critical Systems (SCS)	
M200	Selected Topics in SCS	Ausgewählte Kapitel der SCS	5
M201	Applied Logic	Angewandte Logik	5
M202	Dependable Systems	Zuverlässige Systeme	5
M203	Domain Specific Languages	Domänenspezifische Sprachen	5

Anlage 6 Lernergebnisse und Kompetenzen für jedes Modul:

Modulbezeichnung	M1 Computer Vision
Lernergebnisse und Kompetenzen	 bie Studierenden kennen und verstehen Methoden der digitalen Bildgewinnung, Bild- und Videoverarbeitung einschließlich der physikalischen Grundlagen und der typischen beteiligten Hardwarekomponenten und -schnittstellen, können für grundlegende Aufgabenstellungen der Bild- und Videoverarbeitung passende Algorithmen und Bibliotheken auswählen, daraus lauffähige Softwarelösungen entwickeln und diese im Labor erfolgreich verifizieren. Bei der Methodenauswahl finden sowohl klassische Methoden als auch Methoden des Machine Learning Berücksichtigung, kennen und berücksichtigen beim Lösungsentwurf typische Performanceparameter wie Bildgrößen, Bildraten, Speicherplatzbedarf und Laufzeitverhalten, können dadurch ihre Lösungsansätze auch für den Einsatz auf ressourcenbeschränkten eingebetteten Systemen optimieren.

Modulbezeichnung	M2 Project Engineering
Lernergebnisse und Kompetenzen	 Die Studierenden wissen um die Startphase eines Projekts, kennen die notwendigen Planungsschritte von der Spezifikation über das Lastenheft bis zum Pflichtenheft und führen diese projektspezifisch durch, recherchieren, vergleichen Lösungsmöglichkeiten und entscheiden sich für die zu realisierende Variante, wählen notwendige Komponenten aus und entwerfen erste prototyphafte Lösungsansätze, realisieren die Aufgabenplanung, Dokumentation, Versionsverwaltung und Kommunikation über einen Projektmanagementserver.

Modulbezeichnung	M3 Embedded Linux
Lernergebnisse und Kompetenzen	 kennen Werkzeuge zur Erstellung projektspezifisch angepasster Systemsoftware für Linux-basierte eingebettete Systeme wie z.B. buildroot und Yocto Project / Open Embedded, kennen und verstehen die Bootphasen eines Linux-basierten eingebetteten Systems im Zusammenwirken von Hardware, Bootloader und Betriebssystem, kennen und verstehen den Aufbau und die Funktionsweise von Linux Kernel-Modulen und deren typischen Schnittstellen zu Anwendungssoftware, können Linux-basierte eingebettete Systeme projektspezifisch entwicklen, um passende Hard- und Softwarekomponenten erweitern und diese im Labor praktisch in Betrieb nehmen.

Modulbezeichnung	M4 Verification Validation
Lernergebnisse und Kompetenzen	 kennen die Prinzipien und Methoden der Validierung und Verifikation in der Projektarbeit, wissen, wie mittels Validierung das erstellte Produkt gegen seine Spezifikation geprüft werden kann, wenden hinsichtlich der Verifikation Techniken zur Funktionsüberprüfung von Hard- und Softwarekomponenten an, erwerben Kompetenzen zum systemtechnischen Denken und Handeln festigen ihre Fähigkeit einen Gesamtprozess kritisch zu analysieren.

Modulbezeichnung	M7 Electronic System Level Design
Lernergebnisse und Kompetenzen	 können komplexe digitale Systeme auf Basis von Hard- und Soft-IP Komponenten entwerfen und diese auf z. B. auf System-On-Chip FPGAs technisch umsetzen, kennen System-On-Chip Bus-Architekturen wie AXI Interconnect bzw. AXI Stream Interface, kennen Konzepte wie Direct Memory Access bzw. Memory Mapped Access und können diese anwenden, kennen neben der effizienten Realisierung der arithmetischen Basisoperationen auch grundlegende Architekturen der digitalen Signalverarbeitung für hochratige Anwendungen, kennen Konzepte zur Leistungssteigerung wie Parallelisierung, Mehrfachnutzung und Fließbandverarbeitung sowie Grundzüge der quantitativen Optimierung und können diese einschätzen und anwenden.

Modulbezeichnung	M8 Applied Mathematics
Lernergebnisse und Kompetenzen	 beherrschen die mathematischen Grundlagen zur Beschreibung Digitaler Signale, lösen mit mathematischen Mitteln ausgewählte Aufgaben aus dem Bereich der Systemtheorie, können folgende mathematische Themen sicher anwenden: Diskrete Fourier-Transformation (DFT/FFT), Diskrete Korrelation, Laplace-Transformation, Z - Transformation.

Modulbezeichnung	M9 CE Project 1
Lernergebnisse und Kompetenzen	 bie Studierenden können Anforderungen aus einem Pflichtenheft in detaillierte Arbeitsaufgaben umsetzen, die vorrangig der Konzeptphase und der Entwurfsphase einer (prototyphaften) Produktentwicklung zuzuordnen sind, kennen Projektmanagementwerkzeuge, können diese im Rahmen eines konkret durchzuführenden Projektes erfolgreich anwenden um den Projektfortschritt und die Arbeitsergebnisse nachvollziehbar zu dokumentieren.

Modulbezeichnung	M12 Distributed Systems
Lernergebnisse und Kompetenzen	 verfügen über Grundlagen der Kommunikation und der verteilten Datenverarbeitung als verteilte Betriebssystem- und Netzwerkdienste, kennen die Funktionsweise und Designprinzipien von verteilten Systemen, nutzen Software-Konzepte dezentraler Computersysteme und Netzwerke und setzen diese beim systematischen Entwurf und bei der Implementierung eigener Client-/Server-basierter Software effektiv um, kennen des Weiteren die spezifischen Eigenschaften verteilter Systeme im Kontext drahtloser Kommunikationstopologien bzw. sicherheitskritischer Anwendungen.

Modulbezeichnung	M13 Model Based Systems
Lernergebnisse und	Die Studierenden
	 verstehen grundlegende Konzepte des Modellbasierten Systems Engineering (MBSE), einschließlich der Vor- und Nachteile, verstehen den Modellbasierten Systementwicklungslebenszyklus und sind in der Lage sein, ihn auf ein gegebenes Projekt anzuwenden, kennen Prinzipien der Modellbasierten Systemarchitektur und -design und sind in der Lage, ein Systemmodell unter Verwendung einer Modellierungssprache wie SysML, UML oder AADL zu erstellen, verstehen Prinzipien der Anforderungsanalyse im Rahmen von MBSE und sind in der Lage sein, ein Anforderungsmodell für ein System zu erstellen, kennen verschiedenen Modellierungssprachen für MBSE und sind in der Lage sein, die geeignete Sprache für ein gegebenes Projekt auszuwählen, verstehen Prinzipien der Modellbasierten Systemanalyse und -simulation und sind in der Lage sein, Modellierungstools zur Durchführung von Systemanalyse und -simulation zu verwenden, verstehen Prinzipien der Verifikation und Validierung von Modellbasierten Systemen und sind in der Lage sein, Modellierungstools zur Verifikation und Validierung eines Systemmodells zu verwenden, kennen Prinzipien der Integration von Hardware- und Softwaremodellen in MBSE und sind in der Lage, ein vereinheitlichtes Modell eines Systems zu
	 erstellen, das sowohl Hardware- als auch Softwarekomponenten umfasst, sind in der Lage Fallstudien erfolgreicher Modellbasierten Systementwick- lung zu verstehen und diese Prinzipien auf ein gegebenes Projekt anzuwen- den.

Modulbezeichnung	M14 CE Project 2
Lernergebnisse und Kompetenzen	 können aufbauend auf den Modulen M2 Project Engineering und M9 CE Project 1 Anforderungen aus einem Pflichtenheft in detaillierte Arbeitsaufgaben umsetzen, die vorrangig der Implementierungsphase, der Verifikation und Stabilisierung einer (prototyphaften) Produktentwicklung zuzuordnen sind, kennen Projektmanagementwerkzeuge und können diese im Rahmen eines konkret durchzuführenden Projektes erfolgreich anwenden um den Projektfortschritt und die Arbeitsergebnisse nachvollziehbar zu dokumentieren.

Modulbezeichnung	M17 Master's Thesis
Lernergebnisse und Kompetenzen	 fertigen eine Masterarbeit an, in der sie Probleme selbstständig, anwendungsorientiert und wissenschaftlich lösen, bringen das während ihres Studiums erworbene Fach- und Methodenwissen sowie die dabei erworbenen Fach- und Sozialkompetenzen ein und stellen diese unter Beweis, zeigen, dass sich ihr Wissen über die Definition der Systemanforderungen der Aufgabenstellung, das Erarbeiten des System Designs, die Realisierung von Teilsystemen auf die Dokumentation und die Überprüfung der Lösung erstreckt, weisen mit der Erstellung der Masterarbeit ihre Fähigkeit zum selbständigen wissenschaftlichen Arbeiten nach.

Modulbezeichnung	M18 Final Oral Examination with Master's Thesis Seminar
Lernergebnisse und Kompetenzen	 Die Studierenden können das methodische Vorgehen und die Ergebnisse ihrer Abschlussarbeit darstellen und begründen, verfügen über gesichertes Wissen und Verständnis in den Fachgebieten, de-
	nen die Abschlussarbeit zuzuordnen ist, • beherrschen die erforderlichen Präsentations- und Kommunikationskompetenzen und wenden Methoden des wissenschaftlichen Disputs an.

Modulbezeichnung	M100 Selected Topics in Embedded Control Systems (ECS)
Lernergebnisse und Kompetenzen	 Die Studierenden vertiefen sich erfolgreich in ein wechselndes, aktuelles Gebiet aus dem Themenspektrum des Computer Engineering mit Schwerpunkt Embedded Control Systems, erweitern dabei sowohl ihre praktischen als auch theoretischen Fachkenntnisse gegenüber dem Stand der Technik, können themengebunden zu speziellen Problemstellungen des Vertiefungs-
	bereiches Embedded Control Systems praktische Lösungen erarbeiten und die Ergebnisse bewerten.

Modulbezeichnung	M101 Hardware/Software Co-Design
Lernergebnisse und	Die Studierenden
Kompetenzen	sind in der Lage für eine gegebene Systembeschreibung eine geeignete Hardware/Softwarearchitektur zu bestimmen,
	können Hard/Softwarearchitekturen in Hinblick auf Durchsatz, Ressourcen- und Energieverbrauch zu optimieren,
	sind in der Lage die Vor- und Nachteile einzelner Implementierungsalternativen zu bestimmen und zu erläutern,
	wenden Verfahren zur Systempartitionierung an,
	können die einzelnen Schritte der Systemsynthese erläutern,
	schätzen die Qualität von Systementwürfen ab,
	sind in der Lage Systembeschreibungen zu erstellen.

Modulbezeichnung	M103 Advanced Signal Processing
Lernergebnisse und	Die Studierenden
Kompetenzen	 verfügen über vertiefte Kenntnisse und Fertigkeiten in der Digitalen Signal- verarbeitung und in der Analyse digitaler Signale im Zeit- und Frequenzbe- reich,
	 sind in der Lage digitale Filter zu entwerfen und nach Anwendungserforder- nissen umzusetzen.

Modulbezeichnung	M200 Selected Topics in Safety Critical Systems (SCS)
Lernergebnisse und Kompetenzen	 Die Studierenden vertiefen sich erfolgreich in ein wechselndes, aktuelles Gebiet aus dem Themenspektrum des Computer Engineering mit Schwerpunkt Safety Critical Systems, erweitern dabei sowohl ihre praktischen als auch theoretischen Fachkenntnisse gegenüber dem Stand der Technik, können themengebunden zu speziellen Problemstellungen des Vertiefungs-
	bereiches Safety Critical Systems praktische Lösungen erarbeiten und die Ergebnisse bewerten.

Modulbezeichnung	M201 Applied Logic			
Lernergebnisse und Kompetenzen	 kennen die Grundbegriffe der formalen Logik und verschiedene Werkzeuge zu deren Anwendung, können für Problemstellungen aus unterschiedlichen Bereichen eine ausreichend ausdrucksstarke Logik auszuwählen und eine informell gegebene Problemstellung in der ausgewählten Logik adäquat zu formalisieren, können Werkzeuge wie Entscheidungsprozeduren, Theorembeweiser und Model-Checker anwenden und die Ergebnisse dieser Anwendungen richtig interpretieren. 			

Modulbezeichnung	M202 Dependable Systems			
Lernergebnisse und Kompetenzen	 kennen grundlegenden Konzepte von Zuverlässigkeit, Verfügbarkeit und Sicherheit, bewerten verschiedene Hardware-Redundanz- und Fehlerbehebungstechniken wie Duplizierung, Vielfalt und Abstimmung und verstehen ihre Stärken und Schwächen, bewerten verschiedene Software-Fehlerbehebungstechniken wie Fehlererkennung, Wiederherstellung und Replikation und verstehen ihre Stärken und Schwächen, verstehen die Grundsätze der Zuverlässigkeitsbewertung und -modellierung, einschließlich Fehlerinjektion, Zuverlässigkeitsmodellierung und Systemtest, bewerten verschiedene Sicherheitstest- und Verifizierungstechniken, Schwachstellenanalyse und Codeüberprüfung und verstehen ihre Stärken und Schwächen, wägen zwischen verschiedenen Zuverlässigkeits- und Sicherheitstechniken ab und wenden die gelernten Grundsätze und Techniken an, um zuverlässige Systeme zu entwerfen und zu bewerten, verstehen die Bedeutung zuverlässiger Systeme in verschiedenen Bereichen wie Luft- und Raumfahrt, Gesundheits- und Transportwesen. 			

Modulbezeichnung	M203 Domain Specific Languages			
Lernergebnisse und Kompetenzen	 kennen Beschreibungssprachen für Hard-/Softwaresysteme und können diese zur Beschreibung von realen Systemen anwenden, verstehen fortgeschrittene Techniken zur Analyse und Validierung von Modellen, sind weiterhin in der Lage zu erkennen, unter welchen Umständen die Verwendung von domänenspezifischen Sprachen einer Verwendung von Standardsprachen vorzuziehen ist, können für überschaubare Problemklassen eine zugeschnittene domänenspezifische Sprache in Form ihrer Syntax definieren sowie zugehörige Editoren ableiten, sind mit der Erstellung von Codegeneratoren für ausgesuchte Zielplattformen vertraut. 			

AWE-Module/Fremdsprachen

Modulbezeichnung	M5 + M6 Supplementary Module 1 and 2					
Lernergebnisse und	Die Studierenden					
Kompetenzen	• erwerben überfachliche bzw. fachübergreifende, insbesondere soziale und kom-					
	munikative Kompetenzen ("soft skills") und/oder					
	• gewinnen vertieften Einblick in geistes-, kommunikations-, gesellschafts- und					
	kulturwissenschaftliche Denk- und Herangehensweisen und/oder					
	• sind nach Abschluss des Moduls in der Lage, andere Kulturen besser zu verste-					
	hen und in anderen kulturellen Kontexten zu agieren und/oder					
	gewinnen vertiefte Einblicke in die Potenziale und Probleme interdisziplinärer					
	wissenschaftlicher Kooperation.					

Modulbezeichnung	M5 Englisch C1.1 A/W/T oder Englisch C1.2 A/W/T				
Lernergebnisse und	Allgemeinsprache oder Wirtschaft oder Technik (C1.1 oder C1.2)				
Kompetenzen	Das Modul ist aus dem Modulangebot der ZE Fremdsprachen frei wählbar und dient unter Berücksichtigung aller Sprachfertigkeiten (Hören, Sprechen, Lesen, Schreiben) der Vervollkommnung bereits erworbener allgemein- und fachsprachlicher Kenntnisse mit folgender Zielsetzung:				
	Verständnis verschiedenartiger umfangreicher Texte und Identifikation implizi-				
	ter Bedeutung,				
	flüssige und spontane Ausdrucksweise ohne größeres Suchen nach adäquaten				
	Wendungen,				
	• flexibler und effektiver Sprachgebrauch im sozialen, akademischen und berufli-				
	chen Kontext und				
	klare, gut strukturierte und detaillierte Textproduktion zu anspruchsvollen The-				
	men unter Verwendung usueller Informationsstrukturen.				

Modulbezeichnung	M5 + M6 Englisch C1.1 A/W/T oder Englisch C1.2 A/W/T oder			
	Französisch MB2.2W oder Russisch B2.2 W oder Spanisch B2.2W			
Lernergebnisse und	Englisch: C1.1 oder C1.2 Allgemeinsprache oder Wirtschaft oder Technik ()			
Kompetenzen	Die Module/Das Modul dienen/dient unter Berücksichtigung aller Sprachfertigkeiten (Hören, Sprechen, Lesen, Schreiben) der Vervollkommnung bereits erworbener allgemein- und fachsprachlicher Kenntnisse mit folgender Zielsetzung:			
	Verständnis verschiedenartiger umfangreicher Texte und Identifikation impliziter Bedeutung,			
	flüssige und spontane Ausdrucksweise ohne größeres Suchen nach adäquaten Wendungen,			
	flexibler und effektiver Sprachgebrauch im sozialen, akademischen und berufli- chen Kontext und			
	klare, gut strukturierte und detaillierte Textproduktion zu anspruchsvollen The- men unter Verwendung usueller Informationsstrukturen.			
	Französisch/Russisch/Spanisch: B2.2 Wirtschaft			
	Das Modul dient unter Berücksichtigung aller Sprachfertigkeiten (Hören, Sprechen, Lesen, Schreiben) der weiteren Vertiefung der auf Mittelstufe 2 erlangten Sprach- kompetenz mit folgender Zielstellung:			
	hohes Textverständnis sowohl bei Texten mit konkretem als auch abstraktem Inhalt,			
	Präsentation und Diskussion von fachsprachlich relevanten Themen,			
	flüssige Gesprächsführung, auch zu spontan gewählten Themen,			
	detaillierte und klar strukturierte Textproduktion zu fachlichen Themen und			
	Darlegung des eigenen Standpunkts zu einem fachlichen Hauptthema unter Benennung der Vor- und Nachteile unterschiedlicher Ansätze.			

Modulbezeichnung	M5 + M6 Deutsch als Fremdsprache C1.1W oder C1.1T			
Lernergebnisse und	Deutsch als Fremdsprache C1.1 Wirtschaft oder Technik			
Kompetenzen	Das Modul dient unter Berücksichtigung aller Sprachfertigkeiten (Hören, Sprechen, Lesen, Schreiben) der Vervollkommnung bereits erworbener allgemein- und fachsprachlicher Kenntnisse mit folgender Zielsetzung:			
	Verständnis verschiedenartiger umfangreicher Texte und Identifikation implizi-			
	ter Bedeutung,			
	flüssige und spontane Ausdrucksweise ohne größeres Suchen nach adäquaten Wendungen,			
	flexibler und effektiver Sprachgebrauch im sozialen, akademischen und berufli- chen Kontext und			
	klare, gut strukturierte und detaillierte Textproduktion zu anspruchsvollen Themen unter Verwendung usueller Informationsstrukturen.			

Anlage 7 Spezifika des Diploma Supplements

Nachfolgend werden die Spezifika des Diploma Supplements des Masterstudiengangs Computer Engineering ausgewiesen.

HTW Berlin

Diploma Supplement - Master Computer Engineering -

1.	ANGABEN ZUM INHABER/ZUR INHABERIN DER QUALIFIKATION
1.1/1.2	Familienname(n) / Vorname(n)
1.3	Geburtsdatum (TT/MM/JJJJ)
1.4	Matrikelnummer oder Code zur Identifizierung des/der Studierenden (wenn vorhanden)
2.	ANGABEN ZUR QUALIFIKATION
2.1	Bezeichnung der Qualifikation und (wenn vorhanden) verliehener Grad (in der Originalsprache)
	Master of Engineering (M.Eng.)
2.2	Hauptstudienfach oder -fächer für die Qualifikation
	Computer Engineering
2.3	Name und Status (Typ/Trägerschaft) der Einrichtung, die die Qualifikation verliehen hat (in der Originalsprache)
	Hochschule für Technik und Wirtschaft Berlin (HTW Berlin) University of Applied Sciences
	(s. Abschnitt 8) (Hochschule (FH)/staatlich)
2.4	Name und Status (Typ/Trägerschaft) der Einrichtung (falls nicht mit 2.3 identisch), die den Studiengang durchgeführt hat (in der Originalsprache)
	Siehe 2.3
2.5	Im Unterricht / in der Prüfung verwendete Sprache(n)
	Deutsch
3.	ANGABEN ZU EBENE UND ZEITDAUER DER QUALIFIKATION
3.1	Ebene der Qualifikation
	Postgradualer berufsqualifizierender Hochschulabschluss mit stärker anwendungsorientiertem Profil nach einem abgeschlossenen Bachelor- oder Diplomstudiengang (siehe Abschnitte 8.1 und 8.4.2) inklusive einer Masterarbeit

3.2 Offizielle Dauer des Studiums (Regelstudienzeit) in Leistungspunkten und/oder Jahren

Regelstudienzeit: 4 Semester (2 Jahre)

Workload: 3600 Stunden

Leistungspunkte (LP) nach ECTS: 120

davon Masterarbeit und Abschlusskolloquium 30 LP

3.3 Zugangsvoraussetzung(en)

- Bachelor of Engineering im Studiengang Computer Engineering oder mindestens
 Bachelor of Science oder Bachelor of Engineering in ähnlichen Studiengängen oder ausländisches Äquivalent und
- spezielle Auswahlkriterien

4. ANGABEN ZUM INHALT DES STUDIUMS UND ZU DEN ERZIELTEN ERGEBNISSEN

4.1 Studienform

Vollzeitstudium, Präsenzstudium

4.2 Lernergebnisse des Studiengangs

Das Studium im konsekutiven Masterstudiengang Computer Engineering vertieft die im Bachelorstudiengang Computer Engineering erworbenen Fähigkeiten und Fertigkeiten zur Entwicklung von Hard- und Softwaresystemen. Ein besonderes Augenmerk liegt auf der Befähigung der Studierenden, zunehmend komplexer werdende Aufgaben bzw. Teilaufgaben sowohl als Einzelperson als auch innerhalb eines Teams zu lösen. Die Stärkung der Lösungskompetenz schließt eine zunehmende Befähigung zur kritischen Auseinandersetzung mit dem Stand der Technik sowie zur wissenschaftlichen Arbeit mit ein.

Absolvent*innen verfügen über umfangreiches, anwendungsbereites Wissen zur Entwicklung von Hard- und Softwaresystemen. Sie sind in der Lage, Kundenwünsche zu analysieren und ein optimiertes Lösungskonzept zu erarbeiten sowie technisch effizient umzusetzen.

Ein solides Überblickwissen über angrenzende Fachgebiete ermöglicht es Absolvent*innen, mit Kolleg*innen anderer Fachdisziplinen effektiv an der Lösung technischer Herausforderungen zusammen zu arbeiten.

Absolvent*innen des Studiengangs Computer Engineering finden aufgrund ihrer fundierten Ausbildung ein interessantes und anspruchsvolles Spektrum an Berufsfeldern innerhalb der Ingenieurwissenschaften vor. So z.B.:

in der Entwicklung komplexer Software/Hardware-basierter Systeme in

- der Automobiltechnik,
- dem Maschinenbau,
- der Luft- und Raumfahrt und
- der Medizintechnik oder

in der Forschung und Entwicklung innerhalb von

- Universitäten, Hochschulen,
- Institutionellen Forschungseinrichtungen und
- firmeninternen Forschungs- und Entwicklungsabteilungen.

Studienzusammensetzung:

- Pflichtmodule: 46 ECTS-LP
- Wahlpflichtmodule: 44 ECTS-LP
- Masterarbeit inklusive Abschlusskolloquium: 30 ECTS-LP

4.3 Einzelheiten zum Studiengang, individuell erworbene Leistungspunkte und erzielte Noten

Siehe Masterzeugnis für weitere Details zu den absolvierten Schwerpunktmodulen und dem Thema der Masterarbeit inklusive ihrer Benotungen

4.4 Notensystem und, wenn vorhanden, Notenspiegel

4.5 Gesamtnote (in Originalsprache)

- Abschlussprädikat (ungerundete Abschlussnote) -

Zusammensetzung des Gesamtprädikats:

60 % Modulnoten

30 % Masterarbeit und

10 % Abschlusskolloquium

5. ANGABEN ZUR BERECHTIGUNG DER QUALIFIKATION

5.1 Zugang zu weiterführenden Studien

Der Abschluss berechtigt zur Aufnahme eines Promotionsstudiums; die jeweilige Promotionsordnung kann zusätzliche Voraussetzungen festlegen.

5.2 Zugang zu reglementierten Berufen (sofern zutreffend)

Der Masterabschluss eröffnet den Zugang zum höheren Dienst in Deutschland.

6. WEITERE ANGABEN

6.1 Weitere Angaben

Die HTW Berlin hat am 31. Mai 2021 durch Akkreditierungskommission der Agentur AQAS die Systemreakkreditierung erhalten. Damit sind alle Studiengänge der HTW Berlin, die Gegenstand der internen Qualitätssicherung nach den Vorgaben des akkreditierten Systems waren und sind, akkreditiert. Darunter fällt auch der hier vorliegende Studiengang (siehe: www.akkreditierungsrat.de).

6.2 Weitere Informationsquellen

HTW Berlin: http://www.htw-berlin.de

Anlage 8 Äquivalenztabelle

Nr.	Modulbezeichnung gemäß Studien- und Prüfungsordnung vom 11. Ja- nuar 2017 (AMBL. HTW Berlin Nr. 20/17)	LP	Nr.	Modulbezeichnung gemäß dieser Studien- und Prüfungsordnung	LP
M1	Programmierung Eingebetteter Systeme	5	М3	Embedded Linux	6
M2	Angewandte Mathematik	6	M8	Applied Mathematics	5
M3	Ausgewählte Kapitel der Software- entwicklung	5	B32	Software Engineering 1, BA AI vom 6. Januar 2021 AMBL. HTW Berlin Nr. 12/21	5
M4	Messtechnik	5	M69	Medizinische Sensorik und Mess- technik (aus dem Bachelorstudiengang Ge- sundheitselektronik vom 27. April	5
				2016 (AMBl. HTW Berlin Nr. 13/16), zuletzt geändert am 10. Mai 2017 (AMBl. HTW Berlin Nr. 23/17)	
M5	Projektentwicklung	5	M2	Project Engineering	7
M6	AWE-Modul 1	2	M5	Supplementary Module 1	2
M7	AWE-Modul 2	2	М6	Supplementary Module 2	2
M8	Bild- und Videoverarbeitung	5	M1	Computer Vision	7
М9	VLSI-Anwendungen	5	M7	Electronic System Level Design	5
M10	Regelungstechnik	5	VA11	Moderne Methoden der Regelungs- technik	5
				(aus dem Masterstudiengang Elekt- rotechnik vom 11. April 2018 (AMBl. HTW Berlin Nr. 15/18)	
M11	Modellbildung und -analyse	5	M203	Domain Specific Languages	5
M12	CE-Projekt 1	10	M9	CE Project 1	10
M13	Verteilte Systeme	5	M12	Distributed Systems	5
M14	Verifikation und Validierung	5	M4	Verification Validation	5
M15	Digitale Signalverarbeitung	5	M103	Advanced Signal Processing	5
M16	Drahtlose Kommunikation	5	N04	Mobilkommunikation	

				(aus dem Masterstudiengang Infor- mations- und Kommunikations- technik vom 12. Januar 2022 (AMBl. HTW Berlin Nr. 05/22)	
M17	CE-Projekt 2	10	M14	CE-Project 2	10
M18	Masterarbeit	25	M17	Master's Thesis	25
M19	Abschlusskolloquium mit Master- seminar	5	M18	Final Oral Examination with Master's Thesis Seminar	5